import dascore as dc
from dascore.utils.downloader import fetch
= fetch("prodml_2.1.h5")
file_path
= dc.read(file_path) patch
read
read(
path: str | pathlib.Path | dascore.utils.io.IOResourceManager[str, Path, IOResourceManager] ,
file_format: str | None[str, None] = None,
file_version: str | None[str, None] = None,
time: tuple[tuple[int | float | str | numpy.datetime64 | pandas._libs.tslibs.timestamps.Timestamp | None[int, float, str, datetime64, Timestamp, None], int | float | str | numpy.datetime64 | pandas._libs.tslibs.timestamps.Timestamp | None[int, float, str, datetime64, Timestamp, None]], None] = None,
distance: tuple[tuple[float | None[float, None], float | None[float, None]], None] = None,
**kwargs ,
)-> ‘SpoolType’
Read a fiber file.
For most cases, dascore.spool
is preferable to this function.
Parameters
Parameter | Description |
---|---|
path | A path to the file to read. |
file_format |
A string indicating the file format. If not provided dascore will try to estimate the format. |
file_version | An optional string indicating the format version. |
time | An optional tuple of time ranges. |
distance | An optional tuple of distances. |
*kwargs | All kwargs are passed to the format-specific read functions. |
Unlike spool
this function reads the entire file into memory.